Investigation of the microstructure and phase evolution across multi-material Ni 50.83 Ti 49.17 -AISI 316L alloy interface fabricated using laser powder bed fusion (L-PBF)
Materials & Design, ISSN: 0264-1275, Vol: 221, Page: 110947
2022
- 10Citations
- 26Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study evaluates the phase and microstructural evolution of additively manufactured (AM) Nickel Titanium (NiTi) alloy, across the interface with 316L stainless steel build plate, in order to understand the processing parameter (input power, layer thickness and scan speed), composition, and microstructure interrelationships necessary to achieve excellent multi-material bonding between NiTi and 316L. The effect of the process parameters utilised was characterised using the Scanning Electron Microscope (SEM), Electron Backscatter Diffraction (EBSD), X-ray diffraction (XRD), and Energy-dispersive X-ray spectroscopy (EDX). SEM/EBSD results demonstrated, for the first time, that the microstructure and phase close to the interface was complex and comprised martensite, austenite and Fe phases, sequentially arranged in a layered sandwich pattern across the build direction. This complexity was necessary for excellent bonding. The L-PBF process parameters influenced the diffusion behaviour and the concentration of elements found at the interface. The diffusion rate of Fe and Ti across the NiTi-316L interface was 3.05×10-6m2/s and 3.27×10-8m2/s, respectively, representing a 93.27-fold increase. The observed microstructural and phase evolution is related to the generated interface chemistry and the thermomechanical history related strain resulting from the L-PBF process.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S026412752200569X; http://dx.doi.org/10.1016/j.matdes.2022.110947; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85134841073&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S026412752200569X; https://dx.doi.org/10.1016/j.matdes.2022.110947
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know