Custom-designed heat treatment simultaneously resolves multiple challenges facing 3D-printed single-crystal superalloys
Materials & Design, ISSN: 0264-1275, Vol: 222, Page: 111075
2022
- 10Citations
- 16Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Single-crystal Ni-based superalloys are currently the material of choice for turbine blade applications, especially with the emerging additive manufacturing (AM) that facilitates the manufacture/repair of these single crystals. This promising AM route, however, comes with a dilemma: in the fusion and heat affected zones after e-beam or laser induced melting, one needs a solutionizing annealing to relieve the residual stresses and homogenize the chemical/microstructure. The super-solvus solutionizing temperature is usually adopted from the protocol for the cast superalloys, which almost always causes recrystallization and stray grain growth, resulting in a polycrystalline microstructure and degrading the high-temperature mechanical performance. Here we demonstrate a custom-designed post-printing heat treatment to replace the conventional super-solvus one. The recovery and relatively low temperature diminish the driving force for recrystallization and the movement of stray grain boundaries, without suffocating the chemical/microstructural homogenization thanks to the narrow dendrite width and short element segregation distance. The optimal duration of the heat treatment is proposed to achieve atomic-diffusion mediated chemical homogenization while limiting γ′-particle coarsening in the interdendritic regions. Our strategy makes it practically feasible to resolve several bottleneck problems with one processing/treatment, removing a seemingly formidable obstacle to effective additive manufacturing of superalloy single crystal products.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0264127522006979; http://dx.doi.org/10.1016/j.matdes.2022.111075; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85136471040&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0264127522006979; https://dx.doi.org/10.1016/j.matdes.2022.111075
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know