Hot corrosion behavior of plasma sprayed FeCrNiC and FeCrNiC/Cenosphere coatings on ASTM-SA213-T22 steel
Materials Today: Proceedings, ISSN: 2214-7853, Vol: 59, Page: 58-65
2022
- 2Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The steel alloys tubes used to manufacture boilers which are used in high temperature environment in thermal power plants are often subjected to high temperature corrosion. Therefore, to protect the surface of boiler tubes, protective coatings are used to counter the corrosion. In this work FeCrNiC and FeCrNiC/Cenosphere coatings deposited on T22 boiler tube steel using atmospheric plasma spraying. Thermocyclic hot corrosion studies were examined in a liquid salt condition of Na 2 SO 4 -60%V 2 O 5 for 17 cycles of 51 h at 600 °C on uncoated and coated steel. Thermogravimetric practice was utilized to build up the kinetics of hot corrosion of uncoated and coated steel. As-coated samples are studied for microstructure and microhardness. The X-ray diffraction(XRD), Scanning electron microscopy(SEM)/Energy dispersive spectroscopy(EDX), and X-ray mapping characterization techniques were used to analyse the corrosion products. It was observed that FeCrNiC/Cenosphere coated steel showed better hot corrosion resistance than the uncoated steels. Parabolic rate constant values of coated steel are lower in comparison to the uncoated steels. Better resistance is provided by high-temperature stability of mullite, alumina, defensive glassy oxide layer of silicon, titanium and spinels of chromium and carbon that is formed at elevated temperatures.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2214785321067080; http://dx.doi.org/10.1016/j.matpr.2021.10.201; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85130826277&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2214785321067080; https://dx.doi.org/10.1016/j.matpr.2021.10.201
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know