PlumX Metrics
Embed PlumX Metrics

A Simple Mechanical Model for Synthetic Catch Bonds

Matter, ISSN: 2590-2385, Vol: 1, Issue: 4, Page: 911-925
2019
  • 17
    Citations
  • 0
    Usage
  • 26
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    17
    • Citation Indexes
      17
  • Captures
    26

Article Description

Catch bonds are protein-ligand bonds that become more difficult to break as the applied force increases, a counterintuitive phenomenon that has not yet been reproduced in synthetic systems. Here, we have demonstrated that a simple mechanical design based on a tweezer-like mechanism can exhibit catch bond characteristics under thermal excitations. The tweezer has a force-sensitive switch that controls the transition of the system to a high-ligand-affinity state with additional ligand-tweezer interactions. Applying kinetic theory to a two-mass-two-spring idealized model of the tweezer, we show that by tuning the shape of the switch and the ligand-tweezer interaction energy landscapes, we can achieve greater lifetimes at larger force levels. We validate our theory with molecular dynamics simulations and produce a characteristic lifetime curve reminiscent of catch bonds. Our analysis reveals minimal design guidelines for reproducing the catch bond phenomenon in synthetic systems such as molecular switches/foldamers, DNA linkers, and nanoparticle networks.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know