Effect of acid modification of ZSM-5 catalyst on performance and coke formation for methanol-to-hydrocarbon reaction
Molecular Catalysis, ISSN: 2468-8231, Vol: 531, Page: 112702
2022
- 13Citations
- 16Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
To study effects of different acid treatments with HZSM-5 zeolites on the chemistry of framework, acid nature, performance, and coke formation for methanol-to-hydrocarbon reaction, HZSM-5 with different Si/Al ratio were post treated with two different acid solutions (tartaric acid and ammonium hexafluorosilicate). After the post treatment with hexafluorosilicate (HZn-HF), it was found the extensive decrease in all kinds of acid sites owing to the non-selective dealumination, whereas the noticeable decrease in weak Lewis acid sites was found after the post treatment with tartaric acid (HZn-TA) resulted by the selective removal of the surface alumium. The result of the distingushed removal of Al from the bare HZSM-5 zeolites (HZn) also attributed the change in product selectivity for the MTH reaction as follows; high carbon distributions to the C 2 –C 4 range olefins and low carbon distribution to C 10+ species from the HZn-HF samples whereas high carbon distribution to BTEX from the HZn-TA samples. Analysis of the spent catalysts revealed the amount and chemistry of carbon deposits formed during the MTH reaction are directly related to the acidic nature of the HZSM-5 catalysts. For example, the amount of carbon deposit from the spent catalysts were found to be increased in the order: HZn-TA > HZn > HZn-HF. Therefore, among the bare and acid modified HZ catalysts, the HZn-HF type catalyst showed the least carbon deposition despite requiring the longest reaction time for the methanol conversion to reach 80%.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2468823122005880; http://dx.doi.org/10.1016/j.mcat.2022.112702; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85138181138&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2468823122005880; https://dx.doi.org/10.1016/j.mcat.2022.112702
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know