A multi-scale model of martensitic transformation plasticity
Mechanics of Materials, ISSN: 0167-6636, Vol: 40, Issue: 8, Page: 641-657
2008
- 67Citations
- 77Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The remarkable mechanical engineering properties of many advanced steels, e.g. TRIP steels and metastable austenitic stainless steels, are related to their complex microstructural behaviour, resulting from the interaction between plastic deformation of the phases and the austenite to martensite phase transformation during thermomechanical loading. In this paper, a multi-scale physically-based model is presented for the prediction of such structure–property relations for materials exhibiting the martensite phase transformation during mechanical loading. The model incorporates several spatial levels: a macroscopic or engineering level, a mesoscale level of a single austenite grain and a microscale level of smaller domains within the austenite grain where the martensitic transformation takes place on particular crystallographic transformation systems. The model directly incorporates the coupling between elastic and plastic deformation of the phases and the transformation, as well as the dependence of the transformation on the (hydrostatic) stress state, grain orientation with respect to the loading and the history of deformation and transformation. The performance of the model is evaluated on several examples, illustrating the ability of the model to predict the orientation and stress-state dependence of the transformation. The developed model can be used for the systematic study of structure–property relations of these inherently multi-scale materials.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0167663608000197; http://dx.doi.org/10.1016/j.mechmat.2008.02.004; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=42749086790&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0167663608000197; https://dx.doi.org/10.1016/j.mechmat.2008.02.004
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know