Unlocking the diagnostic potential of electrocardiograms through information transfer from cardiac magnetic resonance imaging
Medical Image Analysis, ISSN: 1361-8415, Vol: 101, Page: 103451
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Cardiovascular diseases (CVD) can be diagnosed using various diagnostic modalities. The electrocardiogram (ECG) is a cost-effective and widely available diagnostic aid that provides functional information of the heart. However, its ability to classify and spatially localise CVD is limited. In contrast, cardiac magnetic resonance (CMR) imaging provides detailed structural information of the heart and thus enables evidence-based diagnosis of CVD, but long scan times and high costs limit its use in clinical routine. In this work, we present a deep learning strategy for cost-effective and comprehensive cardiac screening solely from ECG. Our approach combines multimodal contrastive learning with masked data modelling to transfer domain-specific information from CMR imaging to ECG representations. In extensive experiments using data from 40,044 UK Biobank subjects, we demonstrate the utility and generalisability of our method for subject-specific risk prediction of CVD and the prediction of cardiac phenotypes using only ECG data. Specifically, our novel multimodal pre-training paradigm improves performance by up to 12.19 % for risk prediction and 27.59 % for phenotype prediction. In a qualitative analysis, we demonstrate that our learned ECG representations incorporate information from CMR image regions of interest. Our entire pipeline is publicly available at https://github.com/oetu/MMCL-ECG-CMR.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know