Identification of immunodominant epitopes in allelic variants VK210 and VK247 of Plasmodium Vivax Circumsporozoite immunogen
Infection, Genetics and Evolution, ISSN: 1567-1348, Vol: 96, Page: 105120
2021
- 11Citations
- 31Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations11
- Citation Indexes11
- 11
- Captures31
- Readers31
- 31
Article Description
Plasmodium vivax- induced malaria is among the leading causes of morbidity and mortality in sub-tropical and tropical regions and infect 2.85 billion people globally. The continual rise and propagation of resistance against anti-malarial drugs is a prerequisite to develop a potent vaccine candidate for Plasmodium vivax (P. vivax). Circumsporozoite protein (CSP) is an important immunogen of malaria parasite that has the conserved CSP structure as an immune dominant B-cell epitope. In current study, we focused on designing multi-epitope vaccines (MEVs) using various immunoinformatics tools against Pakistani based allelic variants VK210 and VK247 of P. vivax CSP (PvCSP) gene. Antigenicity, allergic potential and physicochemical parameters of both PvCSP variants were assessed for the designed MEVs and they were within acceptable range suitable for post experimental investigations. The three-dimensional structures of both MEVs have been predicted ab initio, optimized, and validated by using different online servers. The both MEVs candidates were stable and free from aggregation-prone regions. The stability of both MEVs had been improved by a disulfide engineering approach. To estimate the binding energy and stability of the MEVs, molecular docking simulation and binding free energy calculations with TLR-4 immune receptor have been conducted. The docking score of PvCSP210 and PvCSP247 for TLR-4 was −6.34 kJ/mol and − 2.3 kJ/mol, respectively. For PvCSP210-TLR4 system, mean RMSD was 4.96 Å while PvCSP247-TLR4 system, average RMSD was 4.49 Å. The binding free energy of PvCSP210-TLR4 complex and PvCSP247-TLR4 complex was −50.49/−117.15 kcal/mol (MMGBSA/MMPSA) and −52.94/−96.26 kcal/mol (MMGBSA/MMPSA), respectively. The expression of both MEVs produced in Escherichia coli K12 expression system by in silico cloning was significant. Immune simulation revealed that the proposed MEVs induce strong humoral and cellular immunological responses, in addition to significant production of interleukins and cytokines. In conclusions, we believed that the MEVs proposed in current research, using combine approach of immunoinformatics, structural biology and biophysical approaches, could induce protective and effective immune responses against P. vivax and the experimental validation of our findings could contribute to the development of potential malaria vaccine.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1567134821004202; http://dx.doi.org/10.1016/j.meegid.2021.105120; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85118128422&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/34655808; https://linkinghub.elsevier.com/retrieve/pii/S1567134821004202; https://dx.doi.org/10.1016/j.meegid.2021.105120
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know