Low-dose X-ray imaging may increase the risk of neurodegenerative diseases
Medical Hypotheses, ISSN: 0306-9877, Vol: 142, Page: 109726
2020
- 9Citations
- 75Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
- CrossRef4
- Captures75
- Readers75
- 75
Article Description
The hypothesis presented here explores the possibility that X-ray imaging commonly used in dental practices may be a shared risk factor for sporadic dementias and motor-neuron diseases. As the evidence will suggest, the brain is ill-equipped to manage the intrusion of low-dose ionizing radiation (IR) beyond that which is naturally occurring. When the brain’s antioxidant defenses are overwhelmed by IR, it produces an abundance of reactive oxygen species (ROS) that can lead to oxidative stress, mitochondrial dysfunction, loss of synaptic plasticity, altered neuronal structure and microvascular impairment that have been identified as early signs of neurodegeneration in Alzheimer’s disease, Parkinson’s, amyotrophic lateral sclerosis, vascular dementia and other diseases that progressively damage the brain and central nervous system. Although genes play a role in all outcomes, the focus here will be on the non-genetic processes at work. Common assumptions regarding the risks of low-dose IR will be addressed, such as: 1) comparing rapid, repeated bursts of man-made IR sent exclusively into the head to equivalent amounts of head-to-toe background IR over longer periods of time; 2) whether epidemiological studies that dismiss concerns regarding low-dose IR due to lack of evidence it causes cancer, heritable mutations or shortened life spans also apply to neurodegeneration; and 3) why even radiation-resistant neurons can be severely impacted by IR exposure, due to IR-induced injury to the processes they need to function. Also considered will be the difficulty of distinguishing the effects of dental X-ray exposure from similarly low amounts of background IR and where to find the evidence that they may, in fact, be responsible for neurodegeneration. Finally, the long-standing belief that whatever risks are inherent in dental radiography must be undertaken for the sake of oral health is challenged on two counts: 1) while dentists continue to drape their patients in lead-lined aprons, the most effective IR safety precautions are often ignored; and 2) there is an alternative dental imaging technology that does not use IR. While the thrust of this article will be on dental radiation and will touch on how age, gender, X-ray equipment and protocols may increase risk, chiropractic radiographs also will be considered because they focus exclusively on the central nervous system. If X-ray imaging is found to be associated with neurodegeneration, the risk-versus-benefit must be reevaluated, every means of reducing exposure implemented and imaging protocols revised.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0306987719314768; http://dx.doi.org/10.1016/j.mehy.2020.109726; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85084073968&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/32361669; https://linkinghub.elsevier.com/retrieve/pii/S0306987719314768; https://dx.doi.org/10.1016/j.mehy.2020.109726
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know