Synergism between anti-angiogenic and immune checkpoint inhibitor drugs: A hypothesis
Medical Hypotheses, ISSN: 0306-9877, Vol: 146, Page: 110399
2021
- 7Citations
- 22Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations7
- Citation Indexes7
- Captures22
- Readers22
- 22
Article Description
Hepatocellular cancer (HCC) and renal cell cancer (RCC) are singularly resistant to conventional chemotherapy drugs but therapies targeting the supporting stroma have significantly altered their management. Two recent trials combining anti-angiogenic (AA) agents with immune checkpoint inhibitors (ICIs)- the IMbrave150 and IMmotion151 – have reported impressive progress over targeted agents. It has been suggested that bevacizumab, by improving tissue perfusion, changes the immune suppressive tumour microenvironment to an immune stimulatory one where the ICIs can be more effective. This hypothesis proposes an alternative explanation: That bevacizumab, by increasing tissue hypoxia, amplifies the mutational burden of the tumour by stress-induced mutagenesis, creating a hypermutator profile, which is more vulnerable to the ICI drug, atezolizumab. Additionally, ICIs are known to cause hyperprogression in some tumours, and bevacizumab could provide further benefit by starving these rapidly proliferative tumours of blood supply and nutrients.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0306987720332904; http://dx.doi.org/10.1016/j.mehy.2020.110399; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85096596158&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/33239232; https://linkinghub.elsevier.com/retrieve/pii/S0306987720332904; https://dx.doi.org/10.1016/j.mehy.2020.110399
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know