Comparison of self-standing and supported graphene oxide membranes prepared by simple filtration: Gas and vapor separation, pore structure and stability
Journal of Membrane Science, ISSN: 0376-7388, Vol: 522, Page: 303-315
2017
- 33Citations
- 82Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A large series of self-standing and supported graphene oxide (GO) membranes were prepared via a facile synthetic approach involving the filtration of GO suspensions through polymeric and ceramic macroporous filters. Our overall aim was to develop a membrane that would be almost impermeable to helium and hydrogen, exhibiting in parallel very high water vapor and moderate alcohol vapor permeability, properties that constitute this type of membranes very promising for pervaporation and gas separation applications. Several of the derived self-standing membranes, especially those developed using aqueous GO suspensions of low concentration in GO, have met the above mentioned requirements. In particular, the development of highly efficient GO membranes using suspensions of low concentration (≤1.0 g/L in order to achieve individual GO flakes rather than GO stacks) and of high volume (>50 mL to avoid very thin membranes which in turn incorporate defects) is straightforward and independent of the filtration rate, while slow filtration rates lead to better results when employing higher GO concentrations (1.5 g/L), but never to a membrane with purely molecular sieving characteristics. Small-angle X-ray scattering (SAXS) measurements indicated better GO's sheet packing and, thus, smaller pore size/network available for gas diffusion in membranes with smoother surfaces. In addition, the in-plane distance between adjacent GO sheets (especially on the outermost layer of the membrane), and also the size of GO stacks, were found to have more impact on the performance of the membranes than the respective d-distance determined by X-ray diffraction (XRD). Overall, a self-standing membrane developed by using anodised alumina (AAO) filter exhibited exceptional stability coupled with an excellent water vapor flux and water/alcohol selectivity.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0376738816316726; http://dx.doi.org/10.1016/j.memsci.2016.09.031; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84988693160&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0376738816316726; https://dx.doi.org/10.1016/j.memsci.2016.09.031
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know