Improved performance of thin-film composite membrane with PVDF/PFSA substrate for forward osmosis process
Journal of Membrane Science, ISSN: 0376-7388, Vol: 535, Page: 188-199
2017
- 95Citations
- 74Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this work, a small amount of hydrophilic perfluorosulfonic acid (PFSA) is incorporated into the polyvinylidene fluoride (PVDF) substrate to develop the high-performance thin-film composite (TFC) membrane for forward osmosis applications. Because of the hydrophilicity and excellent compatibility with PVDF, PFSA not only significantly improves the wettability of the modified membrane substrate, but also well optimizes the pore size by changing the membrane morphology of PVDF/PFSA substrate. These two factors effectively mitigate the water transport resistance and favor the better formation of the polyamide (PA) layer during the interfacial polymerization, thus improving both the water flux and membrane selectivity of the resultant TFC membranes simultaneously. Effects of the PFSA concentration on the overall properties of the modified substrates and corresponding PVDF/PFSA TFC membranes are systematically investigated via various characterizations. Consequently, the PVDF/PFSA TFC membrane achieves a best water flux ( J V ) of 54.4 LMH and a reverse salt flux ( J S ) of 10.9 gMH in AL-DS mode, and a J V of 27.0 LMH with J S of 8.4 gMH in AL-FS mode using deionized (DI) water and 1 M NaCl aqueous solution as the feed and draw solutions respectively. This work may provide a new orientation in developing TFC membranes on the hydrophobic substrate with its intrinsic advantages maximized.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0376738816325662; http://dx.doi.org/10.1016/j.memsci.2017.04.038; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85018630602&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0376738816325662; https://dx.doi.org/10.1016/j.memsci.2017.04.038
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know