Enhancement of performance and stability of thin-film nanocomposite membranes for organic solvent nanofiltration using hypercrosslinked polymer additives
Journal of Membrane Science, ISSN: 0376-7388, Vol: 644, Page: 120172
2022
- 19Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Hypercrosslinked polymer (HCP) additives were successfully incorporated into two polymer matrices: glassy polymer with intrinsic microporosity comprising ethanoanthracene and Tröger's base (PIM-EA-TB) as well as rubbery polydimethylsiloxane (PDMS), forming thin-film nanocomposite (TFN) membranes for organic solvent nanofiltration (OSN) applications. The thermal stability and surface morphology of TFN membranes were characterized by TGA and SEM. OSN results showed that HCP additives increased the alcohol permeances for both kinds of membranes as it provided extra pathways for alcohol molecules to transport through the membranes. Particularly, the PIM-EA-TB membrane gained above 32% improvement on methanol and ethanol permeances after loading of 5 wt% HCP, whilst maintaining a rejection of 92% for Rose Bengal. Moreover, the physical aging of PIM-EA-TB membrane was retarded by HCP additives and the swelling of the PDMS membrane in non-polar solvents was reduced. In small quantities, the HCP nanoparticles proved to be effective additives to improve the OSN performances for both glassy and rubbery polymer membranes.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0376738821011133; http://dx.doi.org/10.1016/j.memsci.2021.120172; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85121213216&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0376738821011133; https://dx.doi.org/10.1016/j.memsci.2021.120172
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know