Linking water quality, fouling layer composition, and performance of reverse osmosis membranes
Journal of Membrane Science, ISSN: 0376-7388, Vol: 680, Page: 121717
2023
- 9Citations
- 20Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Keeping water-treatment membranes from fouling out
When you use a membrane for water treatment, junk builds up on the membrane surface—a process called fouling—which makes the treatment less efficient. In a
Article Description
Fouling of polyamide membranes during reverse osmosis (RO) is a major challenge for adopting membrane technologies to treat highly contaminated waters, especially those containing organic foulants (e.g., natural organic matter (NOM), polysaccharides) and dominant cations (e.g., sodium, magnesium, calcium). This work combines bench-scale membrane fouling experiments with detailed characterization of feedwater chemistry and fouling layer composition/morphology to reveal fundamental mechanisms of (in)organic fouling during RO. Divalent cations are shown to promote fouling by hydrophobic NOM containing aromatic and carboxyl groups, while NOM fouling in the presence of a monovalent cation, sodium, occurs by smaller fulvic acids containing larger fractions of carboxyl groups and other oxygen-rich moieties. Calcium-carboxyl bridging occurs in solution and near the membrane surface to induce NOM aggregation on nanometer length scales. In complex waters containing foulant mixtures, co-fouling by calcium-carboxyl bridging and CaCO 3 precipitation influence membrane performance at longer timeframes. However, the flux decline observed for the co-fouling mechanism was less significant than the sum of its parts, suggesting both synergistic and antagonistic fouling mechanisms should be considered in membrane design/operation. These results encourage the design of pretreatment processes to reduce concentrations of multivalent ions and hydrophobic NOM in RO feedwaters, and of membrane materials to limit attachment/deposition of aggregates to/on polyamide surfaces.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0376738823003733; http://dx.doi.org/10.1016/j.memsci.2023.121717; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85159813936&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0376738823003733; https://dx.doi.org/10.1016/j.memsci.2023.121717
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know