High-performance proton exchange membrane derived from N-heterocycle poly(aryl ether sulfone)s with ether-free hydrophilic blocks and exhibiting good stability and proton-conducting performance
Journal of Membrane Science, ISSN: 0376-7388, Vol: 714, Page: 123402
2025
- 3Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The trade-off issue between proton conduction properties and stability is a constraint on the commercial application of non-fluorinated proton exchange membranes for fuel cells. To alleviate the issue, the multi-block N-heterocycle poly(aryl ether sulfone)s with ether-free hydrophilic blocks (b-SPDPESs), which is composited by diphenyl sulfone moieties and biphthalazindione structures with dense pendant benzenesulfonic groups, are developed to prepare high-performance membranes. The self-assembly effect of block copolymers not only improves the membrane stability but also constructs regular proton conduction channels. Moreover, the conduction channel consists of hydrophilic blocks without ether bonds, which effectively improves the tolerance of the membrane to radicals. The hydrogen-bond network between sulfonic groups and N-heterocycles in the channel improves the proton conduction efficiency, inhibits the swelling of the membrane, and improves the stability of the membrane. As a result, the swelling degree of b-SPDPESs membrane is only 15.8 %, the proton conductivity is as high as 238 mS cm −1, the membrane aging broken time at 80 °C is between 4 and 6.6 h, and the fuel cells loading the membranes and feeding with hydrogen and air perform the max power density of between 0.65 and 1.25 W cm −2. Modulating the sequence structure of chains and constructing multiblock polymers containing ether-free N-heretrocyclic blocks with sulfonic groups improve the stability of membranes while ensuring their proton conductivity.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know