A method to promote safe cycling powered by large language models and AI agents
MethodsX, ISSN: 2215-0161, Vol: 13, Page: 102880
2024
- 26Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures26
- Readers26
- 26
Article Description
This paper presents a novel information generation methodology to support safer cycling patterns in urban environments, leveraging for that Large Language Models (LLMs), AI-based agents, and open geospatial data. By processing multiple files containing previously computed urban risk levels and existing mobility infrastructure, which are generated by exploiting open data sources, our method exploits multi-layer data preprocessing procedures and prompt engineering to create easy-to-use, user-friendly assistive systems that are able to provide useful information concerning cycling safety. Through a well-defined processing pipeline based on Data Ingestion and Preparation, Agents Orchestration, and Decision Execution methodological steps, our method shows how to integrate open-source tools and datasets, ensuring reproducibility and accessibility for urban planners and cyclists. Moreover, an AI agent is also provided, which fully implements our method and acts as a proof-of-concept implementation. This paper demonstrates the effectiveness of our method in enhancing cycling safety and urban mobility planning. •A novel method that combines LLMs and AI agents is defined to enhance the processing of multi-domain open geospatial data, potentially promoting cycling safety.•It integrates urban risk data and cycling infrastructure for a more comprehensive understanding of cycling resources, which become accessible by textual or audio prompts.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2215016124003327; http://dx.doi.org/10.1016/j.mex.2024.102880; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85200231800&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39185461; https://linkinghub.elsevier.com/retrieve/pii/S2215016124003327
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know