An unconstrained and non-redundant identification method of geometric errors and compensation of machine tools by X-AX Laserbar
Manufacturing Letters, ISSN: 2213-8463, Vol: 41, Page: 31-42
2024
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
Efficient and accurate measurement and identification of geometric errors are crucial for improving the precision of CNC machine tools. The X-AX Laserbar, as a novel tool for indirect measurement, has not been extensively studied for the identification of geometric errors in machine tools. In this paper, the geometric error model for a three-axis machine tool is established to illustrate the multilateration measurement principle of the laserbar, and a non-redundant and unconstrained identification method is proposed to identify these geometric errors. This method avoids the use of redundant parameters and additional constraints by employing pose error twists to describe the geometric errors. These pose error twists are identified in a transitional coordinate system, and then the geometric errors will be identified in the machine coordinate system by deriving the relationship between the pose errors and geometric errors. The proposed method is validated with the VMC-850E three-axis machine tool. The geometric error measurement using a laserbar is completed in about 40 min, showing great efficiency. The experimental results indicate that the proposed method is capable of accurately identifying the 17 geometric errors required for error compensation. The identified geometric errors are then applied to the machine tool’s accuracy improvement through error compensation. The results show that the actual geometric errors are controlled to a low level. The proposed method can efficiently measure the geometric errors of three-axis machine tools and contribute significantly to improving their geometric accuracy.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know