Systematic review on marine carbon source-mannitol: Applications in synthetic biology
Microbiological Research, ISSN: 0944-5013, Vol: 289, Page: 127881
2024
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures13
- Readers13
- 13
Review Description
Mannitol, one of the most widespread sugar alcohols, has been integral to daily human life for two centuries. Global population growth and competition for freshwater, food, and land have prompted a shift in the fermentation industry from terrestrial to marine raw materials. Mannitol is a readily available carbohydrate in brown seaweed from the ocean and possess a higher reducing power than glucose, making it a promising substrate for biological manufacturing. This has spurred numerous explorations into converting mannitol into high-value chemicals. Researchers have engineered microorganisms to utilize mannitol in various synthetic biological applications, including: (1) employing mannitol as an inducer to control the activation and deactivation of genetic circuits; (2) using mannitol as a carbon source for synthesizing high-value chemicals through biomanufacturing. This review summarizes the latest advances in the application of mannitol in synthetic biology. The aim is to present a thorough and in-depth knowledge of mannitol, a marine carbon source, and then use this carbon source in synthetic biology to improve the competitiveness of biosynthetic processes. We outlined the methods and difficulties of utilizing mannitol in synthetic biology with a variety of microbes serving as hosts. Furthermore, future research directions that could alleviate the carbon catabolite repression (CCR) relationship between glucose and mannitol are also covered. Provide an overview of the current state, drawbacks, and directions for future study on mannitol as a carbon source or genetic circuit inducer in synthetic biology.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0944501324002829; http://dx.doi.org/10.1016/j.micres.2024.127881; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85202992816&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39241502; https://linkinghub.elsevier.com/retrieve/pii/S0944501324002829
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know