Magnetic graphene molecularly imprinted polypyrrole polymer (MGO@MIPy) for electrochemical sensing of malondialdehyde in serum samples
Microchemical Journal, ISSN: 0026-265X, Vol: 178, Page: 107377
2022
- 8Citations
- 18Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A modified screen-printed carbon electrode (SPCE) has been designed and fabricated for the determination of malondialdehyde (MDA), an important biomarker of oxidative stress. Magnetic graphene oxide (MGO) was synthesized and coated by a molecularly imprinted polypyrrole (MIPy) for the preparation of a novel hybrid nanomaterial (MGO@MIPy). The nanocomposite has been characterized using different spectroscopic and imaging techniques. The coupling of MIPy with MGO allows the exploitation of the magnetic properties of the material for separation, preconcentration and manipulation of analyte which is selectively captured onto the MIPy surface of the nanocomposite. Besides, the derivatization of MDA with diaminonaphtalene (DAN) was carried out, resulting in a more electroactive molecule (MDA-DAN). MDA-DAN was used as template in the synthesis of MIPy. SPCEs were employed to monitor the differential pulse voltammetry (DVP) levels of the material, which is related to the amount of the captured analyte. Under optimum conditions, the nanocomposite-based sensing system has proved to be suitable for the monitoring of MDA, presenting a wide linear range (0.01–100 µM), high sensitivity (experimental LOQ = 0.01 µM) and precision (RSD = 4%). For validation purposes, three chicken serum samples were analysed by external calibration, obtaining recoveries values close to 100% for all the spiked tests. Finally, the developed electrochemical sensor demonstrated to be adequate for bioanalytical application, presenting an excellent analytical performance for the routine monitoring of MDA in serum samples.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0026265X22002053; http://dx.doi.org/10.1016/j.microc.2022.107377; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85126318015&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0026265X22002053; https://dx.doi.org/10.1016/j.microc.2022.107377
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know