Fabrication of highly efficient magnesium silicate and its adsorption behavior towards Cr(VI)
Microporous and Mesoporous Materials, ISSN: 1387-1811, Vol: 323, Page: 111196
2021
- 21Citations
- 20Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Heavy metal ions pollution has caused worldwide attention due to its toxicity to people's health. Existing as chromate anions, Cr(VI) is difficult to remove from polluted water. Owing to their low cost, stability, environmentally benign nature, and excellent properties, silicate materials are widely used in catalysis and adsorption. In this work, magnesium silicates with sepiolite and talc phase were synthesized through facile hydrothermal route using diatomite as substrate and silicon source. The Cr removal capacity of wire-like Mg 4 Si 6 O 15 (OH) 2 -diatomite exhibited a Cr adsorption capacity of 1292 mg/g, which was much higher than the other reported inorganic adsorbents. The adsorption followed Freundlich and Temkin models well, indicating that Cr species adsorbed onto adsorbent was a favorable, exothermic multilayer chemisorption process. The first-principles density functional theory (DFT) calculation results revealed the interaction between adsorptive sites of adsorbents and Cr species, also demonstrated ion-exchange behavior between interlayer Mg ion and Cr(III). We believe these low-cost synthesized adsorbents have great potentials for practical applications in the treatment of heavy metal ions polluted wastewater.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S138718112100322X; http://dx.doi.org/10.1016/j.micromeso.2021.111196; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85107051736&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S138718112100322X; https://dx.doi.org/10.1016/j.micromeso.2021.111196
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know