Host and microbial regulation of mitochondrial reactive oxygen species during mycobacterial infections
Mitochondrion, ISSN: 1567-7249, Vol: 75, Page: 101852
2024
- 3Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Mycobacteria, including Mycobacterium tuberculosis (Mtb) and non-tuberculous mycobacteria (NTM), pose challenges in treatment due to their increased resistance to antibiotics. Following infection, mycobacteria and their components trigger robust innate and inflammatory immune responses intricately associated with the modulation of mitochondrial functions, including oxidative phosphorylation (OXPHOS) and metabolism. Certainly, mitochondrial reactive oxygen species (mtROS) are an inevitable by-product of OXPHOS and function as a bactericidal weapon; however, an excessive accumulation of mtROS are linked to pathological inflammation and necroptotic cell death during mycobacterial infection. Despite previous studies outlining various host pathways involved in regulating mtROS levels during antimicrobial responses in mycobacterial infection, our understanding of the precise mechanisms orchestrating the fine regulation of this response remains limited. Emerging evidence suggests that mycobacterial proteins play a role in targeting the mitochondria of the host, indicating the potential influence of microbial factors on mitochondrial functions within host cells. In this review, we provide an overview of how both host and Mtb factors influence mtROS generation during infection. A comprehensive study of host and microbial factors that target mtROS will shed light on innovative approaches for effectively managing drug-resistant mycobacterial infections.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1567724924000102; http://dx.doi.org/10.1016/j.mito.2024.101852; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85185454188&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38360196; https://linkinghub.elsevier.com/retrieve/pii/S1567724924000102; https://dx.doi.org/10.1016/j.mito.2024.101852
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know