Calcium/calmodulin-dependent protein kinase II (CaMKII), through NMDA receptors and L-Voltage-gated channels, modulates the serine phosphorylation of GluR6 during cerebral ischemia and early reperfusion period in rat hippocampus
Molecular Brain Research, ISSN: 0169-328X, Vol: 140, Issue: 1, Page: 55-62
2005
- 11Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations11
- Citation Indexes11
- 11
- CrossRef10
- Captures12
- Readers12
- 12
Article Description
Recent studies have shown that GluR6 is involved in the modulation of neuronal cell death. It has been shown that PKA can phosphorylate recombinant GluR6 homomeric receptors and that this phosphorylation of GluR6 was suggested to underlie an enhancement of whole-cell current responses. Here, we try to find out whether brain ischemia and reperfusion could induce any change in the serine phosphorylation of GluR6. Our results showed that the serine phosphorylation of GluR6 increased in hippocampus during brain ischemia and early reperfusion period. Then, we used several drugs to investigate the mechanism of modulating the serine phosphorylation of GluR6. KT5720, a specific cell-permeable inhibitor of protein kinase A (PKA), had no effect on the increase in serine phosphorylation of GluR6 induced by brain ischemia or reperfusion. On the other hand, KN-62, a selective inhibitor of rat brain Ca 2+ /calmodulin-dependent protein kinase II (CaMKII), diminished the increase in serine phosphorylation of GluR6. Moreover, our results showed that either MK801 (a NMDA receptor antagonist) or Nifedipine (a L-type Ca 2+ channel (L-VGCC) blocker) decreased the increase in serine phosphorylation. In conclusion, our results suggest that CaMKII, activated through NMDA receptors and L-VGCCs, mediated the serine phosphorylation of GluR6 during brain ischemia and early reperfusion period.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0169328X05002962; http://dx.doi.org/10.1016/j.molbrainres.2005.07.005; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=26844526352&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/16126302; https://linkinghub.elsevier.com/retrieve/pii/S0169328X05002962; https://dx.doi.org/10.1016/j.molbrainres.2005.07.005
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know