Molecular simulation of kerogen-water interaction: Theoretical insights into maturity
Journal of Molecular Liquids, ISSN: 0167-7322, Vol: 299, Page: 112224
2020
- 15Citations
- 29Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The ubiquity of water and kerogen in source rocks at reservoir conditions is a clear indication that the study of kerogen-water system plays a key role and relevant to the current state of knowledge for fundamental and applied shale research. From the early experimental studies, it is acknowledged that kerogen insolubility in a typical organic solvent is due in part to their complex molecular structure. From a theoretical perspective, we aim to understand the molecular interaction of kerogen-water system at the atomic level. The petrophysical implication of this study is to understand the impact of maturity level of kerogen on the water recognition relative to other inorganic components of shale. For this purpose, we have calculated the adsorption free energies of water molecule on multi-configurations of kerogen model in a high mature state using B3LYP/Def2TZVP level of theory. Different models were built to reflect the diversity of kerogen composition (related to the heteroatoms). Furthermore, we have calculated the electrostatic potential and frontiers molecular orbitals to interpret and explain the trend observed in the adsorption free energies. The main finding of our study supported that there are no tight interactions between the water molecules and kerogen. The water-recognition by kerogen surface depends mainly on its constituents of the heteroatoms (N, S, and O). Indeed, nitrogen atoms displayed the highest affinity to ward moisture, followed by oxygen and sulfur. Given that kerogen in its high mature state does not consists much of nitrogen atoms, in that context, the matured kerogen would be less likely to adsorb water molecules in absence of gas.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0167732219353723; http://dx.doi.org/10.1016/j.molliq.2019.112224; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85076619171&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0167732219353723; https://api.elsevier.com/content/article/PII:S0167732219353723?httpAccept=text/xml; https://api.elsevier.com/content/article/PII:S0167732219353723?httpAccept=text/plain; https://dul.usage.elsevier.com/doi/; https://dx.doi.org/10.1016/j.molliq.2019.112224
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know