Dielectric spectroscopy of a ferroelectric nematic liquid crystal and the effect of the sample thickness
Journal of Molecular Liquids, ISSN: 0167-7322, Vol: 387, Page: 122566
2023
- 24Citations
- 25Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The recently discovered ferroelectric nematic liquid crystals have been reported to exhibit very large dielectric permittivity values. Here, we report a systematic investigation of the dielectric behavior of a prototypical ferroelectric nematogen by varying the thickness of the parallel capacitor measuring cell. While in the non-polar high temperature nematic phase results show only slight differences due to slight variations of the alignment, the measured permittivity values in the ferroelectric nematic phase show a linear dependence on the cell thickness. It is also shown that the characteristic relaxation frequency decreases inversely proportionally to the thickness. The results are discussed in terms of three different available models based on different underlying mechanisms, accounting for cancellation of the probe electric fields by polarization reorientation or by ionic charges, or based on a recently proposed continuous phenomenological model.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0167732223013703; http://dx.doi.org/10.1016/j.molliq.2023.122566; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85165231208&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0167732223013703; https://dx.doi.org/10.1016/j.molliq.2023.122566
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know