Calculation of liquidus in eutectic alkali halide mixtures using thermodynamic perturbation theory
Journal of Molecular Liquids, ISSN: 0167-7322, Vol: 410, Page: 125655
2024
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
A statistical-thermodynamic model that makes it possible to describe with good accuracy phase equilibria between melt and crystal in binary alkali halide mixtures with common cations and anions is proposed. This model is based on the thermodynamic perturbation theory, which takes into account the charge-dipole contribution to the interionic interaction of binary molten salts using a multicomponent mixture of charged hard spheres as a reference system. Specific expressions for chemical potentials, taking into account the charge-induced dipole interaction in the molten phase, are presented within the developed approach. Considering binary eutectic mixtures NaF–NaCl, CsF–CsCl, NaF–CsF, and NaCl–CsCl as an example, the liquidus curves obtained in two series of calculations are shown: with the equation of state and without it. The discrepancies between the calculated and experimental data on the position of eutectic equilibrium for most of the considered mixtures do not exceed about 10 percent on the temperature scale and 5 percent on the composition when using only the tabulated values of ionic radii and polarizabilities without any adjustment.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0167732224017148; http://dx.doi.org/10.1016/j.molliq.2024.125655; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85200118143&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0167732224017148; https://dx.doi.org/10.1016/j.molliq.2024.125655
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know