PlumX Metrics
Embed PlumX Metrics

Chromosome length ratio as a biomarker of DNA damage in cells exposed to high dose ionizing radiation

Mutation Research/Genetic Toxicology and Environmental Mutagenesis, ISSN: 1383-5718, Vol: 879, Page: 503501
2022
  • 1
    Citations
  • 0
    Usage
  • 3
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The premature chromosome condensation (PCC) assay is considered as complementary bio-dosimetry tool for chromosome aberration assay and the PCC assay can be used to estimate high dose exposure. Though the PCC ring is considered as prospective biomarker, chromosome length ratio (ratio of longest and shortest chromosome length in PCC spreads) of chemically induced PCC is shown to be very good indicator of ionizing radiation. In view of this, an in-vitro study has been performed using PCC assay to suggest chromosome length ratio (LR) as potential bio-dosimeter induced by high dose ionizing radiation. Blood samples were collected from healthy subjects (n = 3) after prior consent and irradiated to ten different doses ranging between 0 and 20 Gy using 6 MV LINAC X-rays with dose rate of 5.6 Gy/min. Irradiated lymphocytes were cultured and calyculin induced PCC spreads were prepared. PCC spreads were captured using image analysis system and chromosome lengths were measured using open-source ImageJ software. For each dose, LR for 50 chromosome spreads were computed and mean LR value was calculated. LR varies between 6.0 ± 0.08 and 23.6 ± 0.55 for the dose range between 2 and 20 Gy. The dose response curve for LR was observed to be linear with y = 1.02x + 3.36, R 2 = 0.97. Linear dose response relationship obtained in the present study confirms the prospective use of LR measurement. This study is first of its kind to examine chromosome length ratio as a biomarker of DNA damage in cells exposed to high dose X-ray exposure.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know