Mechanical property enhancement in gradient structured aluminum alloy by ultrasonic nanocrystalline surface modification
Materials Science and Engineering: A, ISSN: 0921-5093, Vol: 812, Page: 141101
2021
- 27Citations
- 19Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The large strength difference between hard and soft components in heterogeneous structured materials leads to the evolution of high back-stress hardening, which increases the strength and ductility of materials simultaneously. Moreover, the combination of high shear strain and elevated temperature allows an increase in the strength of low-melting temperature metallic alloys by grain refinement, solute migration, and clustering. In this study, to design a new heterogeneous microstructure in the aluminum alloy, both room temperature (RT) and high-temperature (HT) ultrasonic nanocrystalline surface modification (UNSM) were conducted, and their mechanical properties and microstructural evolutions were investigated. The large shear strain from the UNSM treatment reduces the grain size at the sample surface and creates a gradient structure. The combination of shear strain and elevated temperature during UNSM treatment induces solute migration at a certain depth of the specimens, resulting in the nano-sized Mg-rich particles at the surface region. Both grain refinement and precipitation at the surface region of the HT sample provide strong back-stress hardening in the early stages of deformation that enhances the strength and ductility of materials. Therefore, a high shear strain and control of processing temperature allow the design of a unique heterogeneous microstructure in low-melting temperature metallic alloys, which is a good strategy for enhancing the mechanical properties of sheet or thin metallic products.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0921509321003701; http://dx.doi.org/10.1016/j.msea.2021.141101; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85103321222&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0921509321003701; https://dx.doi.org/10.1016/j.msea.2021.141101
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know