Mechanical behavior of freeze-cast Ti foams with varied porosity
Materials Science and Engineering: A, ISSN: 0921-5093, Vol: 855, Page: 143911
2022
- 7Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Titanium (Ti) foams with relative densities of 0.32, 0.37, and 0.49 were processed via freeze casting. The mechanical characteristics of samples with different porosities were studied in uniaxial compression tests at initial strain rates between 0.001 and 0.5 s −1. According to the results, the stress–strain response does not significantly depend on the strain rate, at least up to the applied maximum stress, which corresponds to 0.1–0.3 engineering strain. In-situ acoustic emission (AE) experiments have revealed that the stress drop beyond the maximum stress corresponds to the formation and propagation of macrocracks. However, cracks were also initiated below the maximum stress, particularly, in samples with higher relative densities. The analysis of the Young's modulus and yield strength versus the porosity exhibits a power law relationship with a high exponent (approximately 4–5). This high exponent is reasonable if the decrease in the porosity level is associated with a change in the deformation mechanism from the compression model to the Gibson–Ashby (GA) model between 0.37 and 0.49 relative density.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0921509322012904; http://dx.doi.org/10.1016/j.msea.2022.143911; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85137261555&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0921509322012904; https://dx.doi.org/10.1016/j.msea.2022.143911
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know