Towards carbon monoxide detection based on ZnO nanostructures
Materials Science and Engineering: B, ISSN: 0921-5107, Vol: 299, Page: 117003
2024
- 4Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this work, we investigated how the morphology of ZnO nanostructures influenced their CO detection. ZnO nanoparticles and nanorods were synthesized using the MAH method. XRD confirmed the formation of wurtzite ZnO without secondary phases. Raman spectroscopy revealed that oxygen vacancies, zinc interstitial, and their free carriers are the dominant defects. The nanorod morphology enhanced the performance towards CO when compared with the nanoparticles. The ZnO nanorods have a higher specific surface area and are more sensitive to CO. The CO detection performance of the ZnO nanorods highlights how the CTAB employed in the synthesis changed the structural defects or states localized inside the bandgap. Moreover, the use of the MAH method with CTAB is important due to the short treatment time, low temperature, and the possibility to control the morphologies of the ZnO nanostructures. Also, the ZnO nanorods response to CO shows their potential as a gas-sensing component.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0921510723007456; http://dx.doi.org/10.1016/j.mseb.2023.117003; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85176554281&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0921510723007456; https://dx.doi.org/10.1016/j.mseb.2023.117003
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know