PLA-PEG-FA NPs for drug delivery system: Evaluation of carrier micro-structure, degradation and size-cell proliferation relationship
Materials Science and Engineering: C, ISSN: 0928-4931, Vol: 91, Page: 297-302
2018
- 8Citations
- 29Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations8
- Citation Indexes8
- CrossRef4
- Captures29
- Readers29
- 29
Article Description
In this paper, the micro-structure of amphiphilic copolymer Polylactic acid-Polyethylene glycol-Folate (PLA-PEG-FA) was studied firstly by a differential scanning calorimetry (DSC). During the process of nanoparticles (NPs) preparation, we found good inter-structure consistency of polymer was the precondition for forming into stable NPs, and those with micro-phase separation structure were prepared of NPs within limits. Hemolytic test and CCK-8 assay results demonstrated the biotoxicity of both NPs and whose leaching liquor was far below related toxicity standards. Two kinds of cell, human breast cancer cell line (MCF-7) and human umbilical vein endothelial cells (EC), showed different manners in test of NPs size-cell proliferation relationship, respectively. Monitored by a nuclear magnetic resonance (NMR) and a gel permeation chromatography (GPC), the degradation behavior of NPs in aqueous solution indicated amide bond break more difficultly than ester bond, and FA classic proton peak disappeared in the third week, meanwhile lactic acid (LA) unit number became 25% of the initial. Finally the NPs was completely degraded in the eighth week. In the whole process, NPs underwent a change from compact to loose state. We hope these results will benefit to improve design of drug delivery system in nanomedicine, which could offer the selection rule for amphiphilic polymer NPs on material and size.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0928493117328199; http://dx.doi.org/10.1016/j.msec.2018.05.049; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85047106562&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/30033258; https://linkinghub.elsevier.com/retrieve/pii/S0928493117328199; https://dx.doi.org/10.1016/j.msec.2018.05.049
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know