Near-infrared fluorescence probes for surgical navigation
Materials Today Chemistry, ISSN: 2468-5194, Vol: 10, Page: 90-103
2018
- 22Citations
- 34Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Optical imaging is a promising tool for visualizing fundamental biological processes including disease progression, detection of tumors, and therapeutic monitoring non-invasively. Unlike visible light, near-infrared fluorescence (NIRF) imaging (beyond 700–1,700 nm) offers a competitive advantage to yield high-resolution images within a certain penetration depth (few millimeters to centimeters depending on NIR window). The last few years have witnessed rapid development of new NIRF probes within the span of whole NIR window, including small-molecule dyes, inorganic nanoparticles, and organic macromolecules. Benefitted by this, we observe a continual surge in the number of preclinical and clinical studies of NIRF imaging in surgery and related applications. At present, NIRF-guided imaging has emerged as a quintessential procedure to assist surgeons for intraoperative delineation and resection of tumors. Moreover, NIRF imaging is also used to improve the intraoperative staging, identify the hidden lesion in diseased organs, map lymph node metastases, detect tumor margins, and highlight vital organs intraoperatively. Considering rapid advancement of this field, we review recent progress in the development of NIRF probes, cancer-targeting strategies and their application for surgical navigation, particularly for the sentinel lymph node mapping, detection of tumors, and angiography. Moreover, we spotlight surgical navigation instrumentation that is currently used for intraoperative tumor detection.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2468519418301563; http://dx.doi.org/10.1016/j.mtchem.2018.07.005; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85054216439&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2468519418301563; https://dx.doi.org/10.1016/j.mtchem.2018.07.005
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know