Effect of environmental temperature and applied potential on water desalination performance using electrodialysis
Materials Today Chemistry, ISSN: 2468-5194, Vol: 20, Page: 100484
2021
- 10Citations
- 29Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Desalination of brackish water is a challenging task for higher recovery of water. In most of the cases, water recovery is low with high wastage. Electrodialysis (ED) provides a solution of water desalination with high recovery. Ion-exchange membranes are the main component for electrodialysis system. Here cation-exchange membrane and anion-exchange membrane were synthesized by free-radical polymerization for water desalination by ED. ATR-FTIR confirms the successful functionalization of the membranes and scanning electron microscopy technique reveals the dense morphology of the membranes. Here we used polyethylene as a binder and blow film extrusion for film formation, which is not only economically viable as well as large amount of membranes can be produced without using hazardous solvent. The desalination study reveals the improvement in desalination performance with slight increment in temperature which may be due to higher ionic mobility. The mechanical and thermal stability of the membranes was characterized to ensure the viability of membranes for desalination at higher temperatures. Effect of applied potential was also studied in the removal of pathogens during desalination and confirmed that 2 V/cell pair applied potential removes almost 97% pathogens during desalination in continuous mode.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2468519421000641; http://dx.doi.org/10.1016/j.mtchem.2021.100484; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85106207211&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2468519421000641; https://dx.doi.org/10.1016/j.mtchem.2021.100484
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know