Rapid prediction of phonon density of states by crystal attention graph neural network and high-throughput screening of candidate substrates for wide bandgap electronic cooling
Materials Today Physics, ISSN: 2542-5293, Vol: 50, Page: 101632
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Machine learning has demonstrated superior performance in predicting vast materials properties. However, predicting a spectral-like continuous material property such as phonon density of states (DOS) is more challenging for machine learning. In this work, with phonon DOS of 4994 inorganic structures with 62 unique elements calculated by density functional theory (DFT), we developed a crystal attention graph neural network (CATGNN) model for predicting total phonon DOS of crystalline materials. The computational cost of training the CATGNN model is several orders of magnitude cheaper than full DFT calculations. We find that high vibrational similarity or phonon DOS overlap is not the only requirement to obtain high interfacial thermal conductance (ITC) instead, the average acoustic group velocity of heat source and heat sink for the acoustic branches in the phonon DOS overlap region is equally important in determining ITC. Pearson correlation analysis yields a few simple material descriptors that are strongly but negatively correlated with ITC. These easy-to-calculate material features combined with the proposed high average acoustic group velocity and phonon DOS overlap predicted by CATGNN model offer a new reliable and fast route for high-throughput screening of novel crystalline materials with desirable high ITC for phonon-mediated thermal management of wide bandgap electronics.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know