PlumX Metrics
Embed PlumX Metrics

Purification and characterization of low molecular weight alkali stable xylanase from Neosartorya spinosa UZ-2-11

Mycoscience, ISSN: 1340-3540, Vol: 61, Issue: 3, Page: 128-135
2020
  • 6
    Citations
  • 0
    Usage
  • 20
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    6
    • Citation Indexes
      6
  • Captures
    20

Article Description

Alkaliphilic xylanase from Neosartorya spinosa UZ-2-11 was purified using a three-step of purification scheme of ammonium sulphate precipitation followed by Sephadex G-100 gel filtration and DEAE-cellulose ion-exchange chromatography, and compared its properties with N. tatenoi KKU-CLB-3-2-4-1 of our previous report. The purified xylanase from N. spinosa UZ-2-11 exhibited maximum activity at pH 9.0 and 45 °C which was similar to endo-xylanase from N. tatenoi KKU-CLB-3-2-4-1. However, this enzyme was stable in a range of pH 6.0–11.0. It was also more stable at a high temperature of 50 °C where the activity was still up to 50% after heating for 120 min. The xylanase was purified 7.89-fold with 3.0% of yield to obtain a specific activity of 11.88 U/mg. The molecular weight of xylanase from this fungus was 27.68 kDa. The K m and V max values of the purified xylanase were 0.24 mg/mL and 15.85 μmol/min/mg, respectively. The xylanase activity was moderately inhibited by Hg 2+ at a concentration of 10 mM, which was different to the case of N. tatenoi KKU-CLB-3-2-4-1 where Hg 2+ was a strong inhibitor. In addition, the hydrolysed birchwood xylan was obtained mailnly xylobiose, xylotriose, xylotetraose and xylopentaose as end products, suggesting that it was an endo-xylanase.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know