Bacteria-derived outer membrane vesicles engineered with over-expressed pre-miRNA as delivery nanocarriers for cancer therapy
Nanomedicine: Nanotechnology, Biology and Medicine, ISSN: 1549-9634, Vol: 45, Page: 102585
2022
- 14Citations
- 22Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations14
- Citation Indexes14
- 14
- CrossRef7
- Captures22
- Readers22
- 22
Article Description
Outer membrane vesicles (OMVs) of Escherichia coli as nanoscale spherical vesicles have been recently used in cancer therapy as drug carriers. However, most of them need complicated methods to load cargos. Herein, we proposed an inexpensive and potentially mass-produced method for the preparation of OMV engineered with over-expressed pre-miRNA. In this work, we found that OMV can be released and inherit over-expressed tRNA Lys-pre-miRNA from mother E. coli that directly used for the tumor therapy. The eukaryotic cells infection experiments revealed that the over-expressed pre-miRNA inside OMV could be released and processed into mature miRNAs with the aid of the camouflage of “tRNA scaffold”. Moreover, the group in vivo treated with targeted OMV tRNA-pre-miR-126 obviously inhibited the expression of target oncogenic CXCR4, and significantly restrain the proliferation of breast cancer tissues. Together, these findings indicated that the OMV-based platform is a versatile and powerful strategy for personalized tumor therapy directly and specificity.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1549963422000715; http://dx.doi.org/10.1016/j.nano.2022.102585; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85135381468&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35901958; https://linkinghub.elsevier.com/retrieve/pii/S1549963422000715; https://dx.doi.org/10.1016/j.nano.2022.102585
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know