Dual-liquid-gated electrochemical transistor and its neuromorphic behaviors
Nano Energy, ISSN: 2211-2855, Vol: 87, Page: 106116
2021
- 34Citations
- 36Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Organic electrochemical transistors (OECTs) are attracting great interest in the field of bioelectronics due to their low operating voltage, flexibility, and biocompatibility. Tunability of the static and transient characteristics renders OECTs with flexible electrical responses and versatile functionalities. However, existing tuning methods are known by changing the structure or composition of OECTs, which are empirical due to the lack of accurate structure-function relationships. Here, we report a post-fabrication and facile tuning method by using a dual-liquid-gate configuration. Based on this, critical parameters of OECT, e.g., threshold voltage ( V TH ), gate bias for the peak transconductance ( V G ( g* m )), electric hysteresis ( V hys ), minimum of the subthreshold swing ( SS* ), and response time ( τ ), can be readily tuned over a range of 0.52 V, 0.48 V, 0.20 V, 0.38 V/decade and 7.2 ms, respectively. We have also developed corresponding mathematical analyses based on the dual-liquid-gating process. Detailed studies on the transient electrical properties demonstrate that auxiliary-gate biases influence the electrochemical doping/de-doping state of the semiconducting channel during the main-gate bias sweeping. Furthermore, typical neuromorphic behaviors of paired-pulse depression and decay time were successfully controlled by varying the auxiliary-gate bias. The proposed dual-liquid-gating is ready for precise engineering on OECT, which is beneficial as an effective tool for conducting an in-depth theoretical study on OECT, constructing multifunctional sensors, and developing more plasticizable neuromorphic devices.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2211285521003724; http://dx.doi.org/10.1016/j.nanoen.2021.106116; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85106240892&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2211285521003724; https://dx.doi.org/10.1016/j.nanoen.2021.106116
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know