Nacre inspired robust self-encapsulating flexible perovskite photodetector
Nano Energy, ISSN: 2211-2855, Vol: 98, Page: 107254
2022
- 20Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The unique properties of metal halide perovskites give them great potential for applications in portable and wearable optoelectronics. However, the intrinsic brittleness of perovskites favors easy crack propagation that deteriorates the optoelectronic performance of the devices. Inspired by nacre, we propose flexible perovskite thin films fabricated by antisolvent-assisted self-encapsulation of polymer and imprinting techniques during crystallization. Such an approach results in synchronous formation of polymer-glued perovskite grains exhibiting nacre-like “brick-and-mortar” structure. The deformable composite architecture bonding hemisphere-shaped grating (HG) and porous photonic crystal (PC) (HG-PC) improves its crystalline quality and light-harvesting capability. An HG-PC photodetector (PD) with high responsivity of 17.31 A/W and detectivity of 5.02 × 10 13 Jones is achieved. Our flexible HG-PC PD retains 95% of the initial photocurrent after 1000 bending cycles at 2 mm curvature radius. This solvent-driven self-encapsulation strategy offers an innovative and universal approach for highly efficient flexible optoelectronics.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2211285522003342; http://dx.doi.org/10.1016/j.nanoen.2022.107254; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85128218880&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2211285522003342; https://dx.doi.org/10.1016/j.nanoen.2022.107254
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know