PlumX Metrics
Embed PlumX Metrics

A poling-free PVDF nanocomposite via mechanically directional stress field for self-powered pressure sensor application

Nano Energy, ISSN: 2211-2855, Vol: 98, Page: 107340
2022
  • 81
    Citations
  • 0
    Usage
  • 60
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    81
    • Citation Indexes
      81
  • Captures
    60

Article Description

It is well known that Poly(vinylidene fluoride) (PVDF) polymer and its composites exhibit limited piezoelectricity only after strong electric field poling (SEFP) to align randomly oriented molecular dipoles inside. Here, we report that a (Pb, Zr)TiO 3 (PZT) particles doped PVDF-polymer nanocomposite shows a large poling-free piezoelectric (PFP) coefficient and strong electromechanical coupling after experiencing mechanically directional stress field (MDSF). Analyses based on WAXD, FTIR, and HRTEM reveal that the MDSF actives and then induces a crystal phase transformation (CPT) from disordered star-shape nanocrystals to ordered, self-poled chain-shape high-β nanocrystalline fibers. PFM scanning images further show the existence of well-defined polarization. Furthermore, a 7-layer series-connected, self-powered circular pressure sensor was fabricated using multi-material 3D-printing technology, which exhibits a high sensitivity of 235 mV/kPa and a high-power density of 0.9 mW/cm 2 under a dynamic pressure of 255 kPa, and it is near 8 times higher than that of a conventional, poled single-layer PVDF sensor. Finally, a (3 × 3) real-time lighting tactile sensor array is 3D printed, confirming its feasibility for practical application. The MDSF-induced CPT and large PFP effect are significant because it may open a way to fabricate piezopolymer integrated devices without SEFP.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know