A poling-free PVDF nanocomposite via mechanically directional stress field for self-powered pressure sensor application
Nano Energy, ISSN: 2211-2855, Vol: 98, Page: 107340
2022
- 81Citations
- 60Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
It is well known that Poly(vinylidene fluoride) (PVDF) polymer and its composites exhibit limited piezoelectricity only after strong electric field poling (SEFP) to align randomly oriented molecular dipoles inside. Here, we report that a (Pb, Zr)TiO 3 (PZT) particles doped PVDF-polymer nanocomposite shows a large poling-free piezoelectric (PFP) coefficient and strong electromechanical coupling after experiencing mechanically directional stress field (MDSF). Analyses based on WAXD, FTIR, and HRTEM reveal that the MDSF actives and then induces a crystal phase transformation (CPT) from disordered star-shape nanocrystals to ordered, self-poled chain-shape high-β nanocrystalline fibers. PFM scanning images further show the existence of well-defined polarization. Furthermore, a 7-layer series-connected, self-powered circular pressure sensor was fabricated using multi-material 3D-printing technology, which exhibits a high sensitivity of 235 mV/kPa and a high-power density of 0.9 mW/cm 2 under a dynamic pressure of 255 kPa, and it is near 8 times higher than that of a conventional, poled single-layer PVDF sensor. Finally, a (3 × 3) real-time lighting tactile sensor array is 3D printed, confirming its feasibility for practical application. The MDSF-induced CPT and large PFP effect are significant because it may open a way to fabricate piezopolymer integrated devices without SEFP.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2211285522004189; http://dx.doi.org/10.1016/j.nanoen.2022.107340; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85129704222&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2211285522004189; https://dx.doi.org/10.1016/j.nanoen.2022.107340
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know