The plasticizer-free composite block copolymer electrolytes for ultralong lifespan all-solid-state lithium-metal batteries
Nano Energy, ISSN: 2211-2855, Vol: 100, Page: 107499
2022
- 39Citations
- 22Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Solid polymer electrolytes (SPEs) are regarded as one of the most promising substitutes for liquid electrolytes to construct highly safe electrochemical energy storage. While liquid plasticizers are frequently employed in SPEs to enhance ionic conductivity, it is inevitably accompanied by a deficiency in safety. Herein, we report plasticizer-free composite block copolymer electrolytes (BCEs) with conductive nanodomains for ultralong lifespan all-solid-state Li-metal batteries (ASSLBs). The composite BCEs with poly(ether-block-amide) (Pebax) block copolymer as a conductive framework and polyethylene glycol dimethyl ether (PEGDE) as a regulator, can connect and manipulate the highly conductive nanodomains. Compared with homopolymer poly(ethylene oxide) (PEO), the conductive nanodomains in composite BCEs with tunable size can manipulate the Li + transport channel, effectively enhancing the Li + conductivity and homogenizing the Li + deposition. In addition, the thin and dense hybrid solid electrolyte interface (SEI) layer, as well as the potent mechanical strength of composite BCEs, can synergistically suppress the dendrite growth. Therefore, the all-solid-state LiFePO 4 /Li cells achieve impressive electrochemical performance with a tiny capacity reduction of 0.0127% per cycle for more than 1350 cycles at 0.5 C. This work aims to give impetus to the development of practical ASSLBs which meet the demands for high safety, long lifespan, and mass production.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2211285522005766; http://dx.doi.org/10.1016/j.nanoen.2022.107499; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85133347259&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2211285522005766; https://dx.doi.org/10.1016/j.nanoen.2022.107499
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know