High efficacy of substrate dimensionality control in optimizing the specific capacitance and phase stability of hybridized nanostructures
Nano Energy, ISSN: 2211-2855, Vol: 113, Page: 108566
2023
- 14Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The hybridization with conductive nanostructures has attracted intense research interest because of its high efficiency in the exploration of efficient energy-functional materials. In this study, we reported a high efficacy of substrate dimensionality control in optimizing the specific capacitance and phase stability of hybridized nanostructures. Employing defective holey TiN nanostructures as substrates was found to enhance the interfacial interactions with a hybridized layered double hydroxide (LDH). A comparative investigation of two-dimensional TiN-LDH nanohybrids with zero-dimensional/one-dimensional TiN-LDH homologs demonstrated that hybridization with holey two-dimensional TiN nanosheets led to a much greater specific capacitance of 2127 F g −1, which is one of the best performances among LDH-based electrodes ever-reported. In situ Raman analysis during electrochemical cycling clearly demonstrated that holey nanosheet morphology of TiN substrate is quite crucial in promoting the phase transition of hybridized Ni-Fe-LDH to NiOOH/FeOOH with the maximization of cation redox activities. These advantages of atomically thin holey TiN nanosheets could be ascribed to intimate electronic coupling at the bilateral interfaces of the two-dimensional LDH nanosheets, in addition to optimized porosity and improved mass transport.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2211285523004032; http://dx.doi.org/10.1016/j.nanoen.2023.108566; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85161647633&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2211285523004032; https://dx.doi.org/10.1016/j.nanoen.2023.108566
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know