Doping of magnesium ions into polyaniline enables high-performance Zn-Mg alkaline batteries
Nano Energy, ISSN: 2211-2855, Vol: 134, Page: 110586
2025
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
In contrast to the rapid development of zinc-based batteries with neutral electrolytes, rechargeable alkaline zinc batteries with higher theoretical capacity remain largely underexplored. Here, we report a novel high-performance rechargeable alkaline Zn-Mg battery utilizing an Mg-doped polyaniline cathode to facilitate reversible redox reactions. It leverages PANI's neutral doping mechanism to adsorb hydroxide anions, preventing the formation of insoluble magnesium hydroxide and facilitating efficient storage charge. This design allows the battery to retain 96.8 % of its capacity after 5000 cycles at a current density of 1.0 A g −1, with coulombic efficiency above 99.8 %. Theoretical calculations and experiments demonstrate that doping enhances conductivity and raises the discharge plateau by altering the LUMO energy level. Altering the cathode structure by doping Mg ions to increase energy density and control Mg(OH) 2 deposition is expected to advance the development of zinc batteries and inspire other high-performance aqueous energy storage systems.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know