Bright cyclic light accelerates photoreceptor cell degeneration in tubby mice
Neurobiology of Disease, ISSN: 0969-9961, Vol: 21, Issue: 3, Page: 468-477
2006
- 32Citations
- 26Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations32
- Citation Indexes32
- 32
- CrossRef26
- Captures26
- Readers26
- 26
Article Description
Photoreceptor cell death is an irreversible, pathologic event in many blinding retinal diseases including retinitis pigmentosa, age-related macular disease, and retinal detachment. Light exposure can exacerbate a variety of human retinal diseases by increasing the rate of photoreceptor cell death. In the present study, we characterize the kinetics of photoreceptor cell death in Tubby (homozygous tub/tub, which have inherited, progressive retinal degeneration) mice born and raised in a bright cyclic light environment. Our data show that raising tub/tub mice in a bright cyclic light environment induces rapid loss of photoreceptors. This effect can be slowed, but not prevented, by raising animals in constant darkness, which suggests the involvement of phototransduction in the accelerated death of photoreceptors in this animal. We further demonstrated that the activities of cytosolic cytochrome c and caspases-3 and -9 were significantly increased in the retinas of tub/tub mice. Raising animals in darkness significantly reduced the increased activities of caspases-3 and -9, as well as cytosolic cytochrome c. We also observed that rhodopsin, a phototransduction protein, is not restricted to the rod outer segment, but is distributed throughout the rod cell, including the inner segments, cell bodies, and synapses. In addition, the light-dependent translocation and compartmentalization of arrestin and transducin are affected by the tubby mutation. Our results support the interpretation that problems in protein trafficking in the photoreceptors of the tub/tub mouse may contribute to retinal degeneration.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0969996105002330; http://dx.doi.org/10.1016/j.nbd.2005.08.017; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=33244478094&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/16216520; https://linkinghub.elsevier.com/retrieve/pii/S0969996105002330; https://dx.doi.org/10.1016/j.nbd.2005.08.017
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know