PlumX Metrics
Embed PlumX Metrics

Hybridizing sparse component analysis with genetic algorithms for microarray analysis

Neurocomputing, ISSN: 0925-2312, Vol: 71, Issue: 10, Page: 2356-2376
2008
  • 17
    Citations
  • 0
    Usage
  • 12
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    17
    • Citation Indexes
      17
  • Captures
    12

Article Description

Nonnegative matrix factorization (NMF) has proven to be a useful tool for the analysis of nonnegative multivariate data. However, it is known not to lead to unique results when applied to blind source separation (BSS) problems. In this paper we present an extension of NMF capable of solving the BSS problem when the underlying sources are sufficiently sparse. In contrast to most well-established BSS methods, the devised algorithm is capable of solving the BSS problem in cases where the underlying sources are not independent or uncorrelated. As the proposed fitness function is discontinuous and possesses many local minima, we use a genetic algorithm for its minimization. Finally, we apply the devised algorithm to real world microarray data.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know