STFT-like time frequency representations of nonstationary signal with arbitrary sampling schemes
Neurocomputing, ISSN: 0925-2312, Vol: 204, Page: 211-221
2016
- 31Citations
- 25Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Spectrograms provide an effective way of time–frequency representation (TFR). Among these, short-time Fourier transform (STFT) based spectrograms are widely used for various applications. However, STFT spectrogram and its revised versions suffer from two main issues: (1) there is a trade-off between time resolution and frequency resolution and (2) almost all the existing TFR methods, including STFT spectrogram, are not designed to handle arbitrary nonuniformly sampled data. To address these two issues, short-time iterative adaptive approach (ST-IAA) was recently proposed as a data-dependent adaptive spectral estimation method that can provide much enhanced TFR performance. In this paper, inspired by the ST-IAA method, we present an alternative approach, namely short-time sparse learning via iterative minimization (ST-SLIM), which can provide sparser and slightly better TFR performance than its ST-IAA counterpart. Moreover, in order to extend the applicability of ST-IAA to signals in the missing data case, we also propose a short-time missing-data iterative adaptive approach (ST-MIAA) which can retrieve the missing data effectively and outperform ST-IAA and ST-SLIM in the missing data case. We will demonstrate via simulation results the superiority of our proposed algorithms in terms of resolution, sidelobe suppression and applicability to signals with arbitrary sampling patterns.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0925231216301114; http://dx.doi.org/10.1016/j.neucom.2015.08.130; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84973129887&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0925231216301114; https://dx.doi.org/10.1016/j.neucom.2015.08.130
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know