PlumX Metrics
Embed PlumX Metrics

Spatial-aware stacked regression network for real-time 3D hand pose estimation

Neurocomputing, ISSN: 0925-2312, Vol: 437, Page: 42-57
2021
  • 22
    Citations
  • 0
    Usage
  • 34
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    22
    • Citation Indexes
      22
  • Captures
    34

Article Description

Making full use of the spatial information of the depth data is crucial for 3D hand pose estimation from a single depth image. In this paper, we propose a Spatial-aware Stacked Regression Network (SSRN) for fast, robust and accurate 3D hand pose estimation from a single depth image. By adopting a differentiable pose re-parameterization process, our method efficiently encodes the pose-dependent 3D spatial structure of the depth data as spatial-aware representations. Taking such spatial-aware representations as inputs, the stacked regression network utilizes multi-joint spatial context and the 3D spatial relationship between the estimated pose and the depth data to predict a refined hand pose. To further improve the estimation accuracy, we adopt a spatial attention mechanism to reduce the influence of irrelevant features for pose regression. In order to improve the speed of the network, we propose a cross-stage self-distillation mechanism to distill knowledge within the network itself. Experiments on four datasets show that our proposed method achieves state-of-the-art accuracy with high running speed around 330 FPS on a single GPU and 35 FPS on a single CPU.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know