Oscillatory Source Tensor Discriminant Analysis (OSTDA): A regularized tensor pipeline for SSVEP-based BCI systems
Neurocomputing, ISSN: 0925-2312, Vol: 492, Page: 664-675
2022
- 4Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Periodic signals called Steady-State Visual Evoked Potentials (SSVEP) are elicited in the brain by flickering stimuli. They are usually detected by means of regression techniques that need relatively long trial lengths to provide feedback and/or sufficient number of calibration trials to be reliably estimated in the context of brain-computer interface (BCI). Thus, for BCI systems designed to operate with SSVEP signals, reliability is achieved at the expense of speed or extra recording time. Furthermore, regardless of the trial length, calibration free regression-based methods have been shown to suffer from significant performance drops when cognitive perturbations are present affecting the attention to the flickering stimuli. In this study we present a novel technique called Oscillatory Source Tensor Discriminant Analysis (OSTDA) that extracts oscillatory sources and classifies them using the newly developed tensor-based discriminant analysis with shrinkage. The proposed approach is robust for small sample size settings where only a few calibration trials are available. Besides, it works well with both low- and high-number-of-channel settings, using trials as short as one second. OSTDA performs similarly or significantly better than other three benchmarked state-of-the-art techniques under different experimental settings, including those with cognitive disturbances (i.e. four datasets with control, listening, speaking and thinking conditions). Overall, in this paper we show that OSTDA is the only pipeline among all the studied ones that can achieve optimal results in all analyzed conditions.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0925231221018956; http://dx.doi.org/10.1016/j.neucom.2021.07.103; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85121973874&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0925231221018956; https://dx.doi.org/10.1016/j.neucom.2021.07.103
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know