PlumX Metrics
Embed PlumX Metrics

A synthetic human proline-rich-polypeptide enhances hydroxyl radical generation and fails to protect dopaminergic neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced toxicity in mice

Neuroscience Letters, ISSN: 0304-3940, Vol: 375, Issue: 3, Page: 187-191
2005
  • 7
    Citations
  • 0
    Usage
  • 7
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Some of the proline-rich-polypeptides (PRPs) are shown to afford protection against spinal cord transection or crush syndrome-induced neurodegeneration in the brain. In the present study a synthetic proline-rich-polypeptide of human hypothalamus origin (h-PRP) has been examined for its potency to protect against dopaminergic neuronal damage caused by the parkinsonian neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Effect of h-PRP on hydroxyl radical ( OH) generation in a Fenton-like reaction was monitored, employing a sensitive salicylate hydroxylation procedure. Balb/c mice treated twice with MPTP (30 mg/kg. i.p., twice, 16 h apart) or h-PRP (20 μg/animal, twice, 16 h apart) showed significant loss of striatal dopamine as assayed by HPLC with electrochemical detection. h-PRP pretreatment failed to attenuate MPTP-induced striatal dopamine depletion. A dose-dependent increase in the generation of OH by h-PRP suggests its pro-oxidant action, and explains its failure to protect against MPTP-induced parkinsonism in mice.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know