PEPNet: A barotropic primitive equations-based network for wind speed prediction
Neural Networks, ISSN: 0893-6080, Vol: 167, Page: 533-550
2023
- 3Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In wind speed prediction technologies, deep learning-based methods have achieved promising advantages. However, most existing methods focus on learning implicit knowledge in a data-driven manner but neglect some explicit knowledge from the physical theory of meteorological dynamics, failing to make stable and long-term predictions. In this paper, we explore introducing explicit physical knowledge into neural networks and propose Physical Equations Predictive Network (PEPNet) for multi-step wind speed predictions. In PEPNet, a new neural block called the Augmented Neural Barotropic Equations (ANBE) block is designed as its key component, which aims to capture the wind dynamics by combining barotropic primitive equations and deep neural networks. Specifically, the ANBE block adopts a two-branch structure to model wind dynamics, where one branch is physic-based and the other is data-driven-based. The physic-based branch constructs temporal partial derivatives of meteorological elements (including u-component wind, v-component wind, and geopotential height) in a new Neural Barotropic Equations Unit (NBEU). The NBEU is developed based on the barotropic primitive equations mode in numerical weather prediction (NWP). Besides, considering that the barotropic primitive mode is a crude assumption of atmospheric motion, another data-driven-based branch is developed in the ANBE block, which aims at capturing meteorological dynamics beyond barotropic primitive equations. Finally, the PEPNet follows a time-variant structure to enhance the model’s capability to capture wind dynamics over time. To evaluate the predictive performance of PEPNet, we have conducted several experiments on two real-world datasets. Experimental results show that the proposed method outperforms the state-of-the-art techniques and achieve optimal performance.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S089360802300463X; http://dx.doi.org/10.1016/j.neunet.2023.08.042; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85172364705&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37696071; https://linkinghub.elsevier.com/retrieve/pii/S089360802300463X; https://dx.doi.org/10.1016/j.neunet.2023.08.042
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know