Exactly conservative physics-informed neural networks and deep operator networks for dynamical systems
Neural Networks, ISSN: 0893-6080, Vol: 181, Page: 106826
2025
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures11
- Readers11
- 11
Article Description
We introduce a method for training exactly conservative physics-informed neural networks and physics-informed deep operator networks for dynamical systems, that is, for ordinary differential equations. The method employs a projection-based technique that maps a candidate solution learned by the neural network solver for any given dynamical system possessing at least one first integral onto an invariant manifold. We illustrate that exactly conservative physics-informed neural network solvers and physics-informed deep operator networks for dynamical systems vastly outperform their non-conservative counterparts for several real-world problems from the mathematical sciences.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0893608024007500; http://dx.doi.org/10.1016/j.neunet.2024.106826; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85208199815&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39509811; https://linkinghub.elsevier.com/retrieve/pii/S0893608024007500
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know