Delayed-feedback oscillators replicate the dynamics of multiplex networks: Wavefront propagation and stochastic resonance
Neural Networks, ISSN: 0893-6080, Vol: 183, Page: 106939
2025
- 2Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- CrossRef2
Article Description
The widespread development and use of neural networks have significantly enriched a wide range of computer algorithms and promise higher speed at lower cost. However, the imitation of neural networks by means of modern computing substrates is highly inefficient, whereas physical realization of large scale networks remains challenging. Fortunately, delayed-feedback oscillators, being much easier to realize experimentally, represent promising candidates for the empirical implementation of neural networks and next generation computing architectures. In the current research, we demonstrate that coupled bistable delayed-feedback oscillators emulate a multilayer network, where one single-layer network is connected to another single-layer network through coupling between replica nodes, i.e. the multiplex network. We show that all the aspects of the multiplexing impact on wavefront propagation and stochastic resonance identified in multilayer networks of bistable oscillators are entirely reproduced in the dynamics of time-delay oscillators. In particular, varying the coupling strength allows suppressing and enhancing the effect of stochastic resonance, as well as controlling the speed and direction of both deterministic and stochastic wavefront propagation. All the considered effects are studied in numerical simulations and confirmed in physical experiments, showing an excellent correspondence and disclosing thereby the robustness of the observed phenomena.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0893608024008682; http://dx.doi.org/10.1016/j.neunet.2024.106939; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85210717538&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39637824; https://linkinghub.elsevier.com/retrieve/pii/S0893608024008682
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know